

Formation of a Phosphine–phosphinite Ligand in RhCl(PRR'₂)[*P*,*P*-R'(R)POCH₂P(CH₂OH)₂] and R'H from *cis*-RhCl(PRR'₂)₂[P(CH₂OH)₃] via P–C Bond Cleavage

Fabio Lorenzini, Brian O. Patrick, and Brian R. James*

Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z1

Received June 21, 2007

Reaction of RhCl(1,5-cod)(THP), where THP = P(CH₂OH)₃, with several PRR'₂ phosphines (R = or \neq R') generates, concomitantly with R'H, the derivatives RhCl(PRR'₂)[*P*,*P*-R'(R)POCH₂P(CH₂OH)₂] in two isomeric forms. The hydrogen of the hydrocarbon co-product derives from a THP hydroxyl group which becomes an 'alkoxy' group at the residual PRR' moiety, this resulting in the *P*,*P*-chelated R'(R)POCH₂P(CH₂OH)₂ ligand. One of the isomers of the PPh₃ system, *cis*-RhCl(PPh₃)[*P*,*P*-P(Ph)₂OCH₂P(CH₂OH)₂], was structurally characterized (cis refers to the disposition of the P atoms with Ph substituents).

Introduction

We have recently reported the syntheses of water-soluble Rh^I-THP complexes (THP is tris(hydroxymethyl)phosphine $[P(CH_2OH)_3])$,¹ which have potential in the areas of aqueous or aqueous/organic two-phase homogeneous catalysis² and in biomedical applications using water-soluble drugs.³ During a subsequent study of the general reactivity of the complexes with other potential ligands, we have discovered a remarkable reaction of RhCl(cod)(THP) (1, cod = 1,5-cyclooctadiene)¹ with PRR'_2 tertiary phosphines ($R = \text{ or } \neq R'$). Initially formed rapidly is the cis-RhCl(PRR'2)2(THP) species (2, detected for the PPh₃ and P(p-F-C₆H₄)₃ systems), but this slowly converts via a THP-promoted P-C bond cleavage of one of the two PRR'2 ligands to give two isomers of RhCl-(PRR'₂)[P,P-R'(R)POCH₂P(CH₂OH)₂] (for example: 3, R = R' = Ph; 4, R = cyclohexyl, R' = Ph) and the hydrocarbon co-product R'H for which a THP-hydroxy proton provides the hydrogen; the new $P, P-R'(R)POCH_2P(CH_2OH)_2$ chelating phosphine-phosphinite ligand contains an 'alkoxy' residue at the residual PRR' moiety (see Scheme 1). Reaction of 1 with PPh_3 provided evidence for intermediate 2 and gave a crystal of 3 that was characterized by X-ray analysis,

while the corresponding reaction of **1** with $PCyPh_2$ (where Cy = cyclohexyl) to give **4**, in conjunction with the structural data, allowed for analysis of the ³¹P{¹H} NMR data.

Experimental Section

General. The RhCl(cod)(THP) complex (1) was synthesized by our recently reported method;¹ the phosphines were used as received from Strem Chemicals, and the reactions with the Rh complex were carried out under Ar using standard Schlenk techniques or in a J-Young NMR tube. MeOH was dried over Mg–I₂, and distilled under N₂. ³¹P{¹H}, ¹³C{¹H}, and ¹H NMR spectra were measured in CD₃OD at room temperature (~300 K), unless stated otherwise, on a Bruker AV400 spectrometer. A residual deuterated solvent proton (relative to external SiMe₄) and external 85% aq H₃PO₄ were used as references (d = doublet, m = multiplet; *J* values given in Hz). Elemental analyses were performed on a Carlo Erba 1108

10.1021/ic7012182 CCC: \$37.00 © 2007 American Chemical Society Published on Web 09/15/2007

^{*} To whom correspondence should be addressed. E-mail:brj@chem.ubc.ca.

Lorenzini, F.; Patrick, B. O.; James, B. R. Dalton Trans. 2007, 3224.
 Wiebus E.; Cornils, B. In Catalyst Separation, Recovery and Recycling;

⁽²⁾ Wieus E., Colmis, B. in Catalysi separation, Recovery and Recycling, Cole-Hamilton, D., Tooze, R., Eds.; Springer: Dordrecht, 2006; Chapter 5.

 ^{(3) (}a) Raghuraman, K.; Pillarsetty, N.; Volkert, W. A.; Barnes, C.; Jurisson, S.; Katti, K. V. J. Am. Chem. Soc. 2002, 124, 7276. (b) Jurisson, S. S.; Ketring, A. R.; Volkert, W. A. Transition Met. Chem. 1997, 22, 315.

Formation of a Phosphine-Phosphinate Ligand

analyzer. Mass spectrometry was performed on a Bruker Esquire electrospray (ESI) ion-trap spectrometer with samples dissolved in MeOH, with positive-ion polarity scanning from 60 to 1000 *m/z*. GC (HP-17 capillary column, 25 m × 0.25 mm (0.26 μ m film), 50 °C for 20 min): $t_{\rm R} = 1.20$ min (benzene). GCMS (Agilent Technologies; 6890N Network GC System, 5975B Inert MSD; HP-chiral column, 30 m × 0.25 mm (0.25 μ m film), 50 °C for 20 min): $t_{\rm R} = 79$ (benzene- d_1).

cis- and trans-RhCl(PPh₃)[P,P-P(Ph)₂OCH₂P(CH₂OH)₂] (3). Addition of PPh₃ (15 mg, 0.058 mmol) in MeOH or CH₃COCH₃ (0.5 mL) to a yellow MeOH or CH₃COCH₃ solution (0.5 mL) of 1 (10 mg, 0.027 mmol) at room-temperature results in the immediate formation of a brown solution, but over ~ 12 h, the solution becomes yellow and, after ~ 2 weeks, X-ray quality yellow crystals (13 mg, 70% yield) of the cis isomer were deposited from a methanol solution. The ³¹P{¹H} and ¹H NMR spectra of this system were monitored in CD₃OD (see Results and Discussion), while the NMR spectra of the isolated material are given here. A satisfactory elemental analysis for 3 was not obtained even for the crystal (see Results and Discussion). Mass spectrum: 673 (M⁺). ¹H NMR: δ 3.41-4.28 (m, 6 H, POCH₂P(CH₂OH)₂), 6.95-7.60 (m, 25 H, C_6H_5). ¹³C{¹H} NMR: δ 54.51–58.92 (m, POCH₂P(CH₂OH)₂), 129.34–137.38 (m, C_6H_5). ³¹P{¹H} NMR (see Figure 2 for labeling): δ 29.62 (m, P_aPh₃, P_APh₃, *cis*- and *trans*-3), 68.70 (ddd, $P_B(CH_2OH)_2$ of trans-3, $J_{PBRh} \simeq 130.5$, $J_{PBPA} \simeq 32.6$, $J_{PBPC} \simeq$ 321.4), and 68.98 (ddd, $P_{\beta}(CH_2OH)_2$ of *cis*-3, $J_{P\beta Rh} \simeq 130.5$, $J_{P\beta P\alpha}$ \simeq 32.6, $J_{P\beta P\gamma} \simeq$ 321.4), 170.47 (ddd, Ph₂P_cO of trans-3, $J_{PCRh} \simeq$ 147.7, $J_{PCPA} \simeq 33.3$, $J_{PCPB} \simeq 321.4$), 170.67 (ddd, $Ph_2P_{\gamma}O$ of *cis*-3, $J_{P\gamma Rh} \simeq 147.7, J_{P\gamma P\alpha} \simeq 33.3, J_{P\gamma P\beta} \simeq 321.4).$

cis- and trans-RhCl(PCyPh₂)[P,P-Ph(Cy)POCH₂P(CH₂OH)₂] (4). The reaction of 1 with $PCyPh_2$ was carried out under conditions identical to those given above for the PPh₃ system, and the system was again monitored by NMR spectroscopy. Maintaining the 12 h reacted solution at ~ -18 °C for ~ 1 week again deposited yellow crystals (15 mg, 78% yield), but these were too small for successful X-ray analysis. Anal. Calcd for C₃₃H₄₅ClO₃P₃Rh: C, 54.97; H, 6.29. Found: C, 54.74; H, 6.59. Mass spectrum: 686 (M⁺). ¹H NMR: δ 0.49–1.56 (m, 22 H, C₆H₁₁), 3.07–4.18 (m, 6 H, POCH₂P(CH₂-OH)₂), 6.99–7.67 (m, 15 H, C₆ H_5). ¹³C{¹H} NMR: δ 26.20–36.35 (m, C₆H₁₁), 57.51-60.80 (m, POCH₂P(CH₂OH)₂), 128.44-135.98 (m, C_6H_5). ³¹P{¹H} NMR (Figure 2): *cis*-4, δ 28.94 (ddd, P_{α} , $J_{P\alpha Rh}$ = 132.3, $J_{P\alpha P\beta}$ = 292.0, $J_{P\alpha P\gamma}$ = 26.4), 82.25 (ddd, P_{β} , $J_{P\beta Rh}$ = 139.3, $J_{P\beta P\alpha} = 292.0$, $J_{P\beta P\gamma} = 32.1$), 196.02 (P_{γ} , $J_{P\gamma Rh} = 199.2$, $J_{P\gamma P\alpha} = 26.4, J_{P\gamma P\beta} = 32.1$; trans-4, δ 29.83 ($P_A, J_{PARh} = 120.5$, $J_{PAPB} = 33.7, J_{PAPC} = 352.3), 78.60 (P_B, J_{PBRh} = 180.8, J_{PBPA} = 180.8)$ 33.7, $J_{PBPC} = 34.6$), 184.36 (P_C , $J_{PCRh} = 148.0$, $J_{PCPA} = 352.3$, J_{PCPB} = 34.6).

Other Phosphine Systems. The in situ reactions (under conditions identical to those described above) of **1** with PEtPh₂, PMePh₂, P(*p*-tol)₃, P(*p*-F-C₆H₄)₃, and P^{*n*}Pr₃ were monitored by NMR as for the PPh₃ and PCyPh₂ systems. No solid complexes were isolated; the $\delta_{\rm H}$ and $\delta_{\rm P}$ shift values and *J* values for all the systems are in Tables S1 and S2, respectively, in the Supporting Information.

X-ray Crystallographic Analysis of *cis-3*. Measurements were made on a Bruker X8 APEX diffractometer using graphitemonochromated Mo K α radiation ($\lambda = 0.71073$ Å); data were collected and integrated using the Bruker SAINT software package⁴ and were corrected for absorption effects using the multiscan technique (SADABS),⁵ with minimum and maximum transmission coefficients of 0.770 and 0.942, respectively. The data were corrected for Lorentz and polarization effects, and the structures

Figure 1. Structure of *cis*-RhCl(PPh₃)[*P*,*P*-P(Ph)₂OCH₂P(CH₂OH)₂] (**3**)-2CH₃OH, with 50% probability ellipsoids. Selected distances (Å) and angles (deg): Rh(1)–P(1), 2.2174(6); Rh(1)–P(2), 2.1487(6); Rh(1)–P(3), 2.3205-(6); Rh(1)–Cl(1), 2.4054(6); P(1)–Rh(1)–P(2), 83.37(2); P(1)–Rh(1)– P(3), 175.04(2); P(1)–Rh(1)-Cl(1), 87.56(2); P(2)–Rh(1)-P(3), 100.62(2); P(2)–Rh(1)-Cl(1), 170.93(2); P(3)–Rh(1)-Cl(1), 88.44(2).

were solved by direct methods.⁶ Crystallographic data: $C_{35}H_{41}O_5P_3$ -RhCl, MW = 772.95, triclinic, $P\bar{1}$ (No. 2), a = 10.472(1) Å, b = 11.607(1) Å, c = 14.588(2) Å, $\alpha = 87.553(6)^\circ$, $\beta = 78.799(5)^\circ$, $\gamma = 83.749(5)^\circ$, V = 1728.6(3) Å,³ T = 173.0(1) K, Z = 2, μ (Mo K_{α}) = 7.51 cm⁻¹, 8381 independent reflections measured, $D_{calcd} = 1.485$ g cm⁻³, R1 = 0.051, wR2 = 0.068 (for $I > 2\sigma(I)$), and 424 refined parameters. CCDC No. 651551.

Results and Discussion

The room-temperature reaction of the yellow complex 1 with PPh₃ in MeOH is summarized in Scheme 1. The immediately formed brown solution by ³¹P{¹H} and ¹H NMR spectra shows loss of 1 (δ_P 17.7, d, $J_{RhP} = 145$), essentially complete formation of an intermediate, 2, free cod, and trace amounts of free PPh₃ (δ_P –4.30, s), free THP (δ_P –25.0, s), and RhCl(cod)(PPh₃) (δ_P 31.9, d, $J_{RhP} = 150$).⁷ Species **2** is characterized by three doublets of doublets of doublets for the three inequivalent P atoms: δ 20.07 (P_{a} (THP), J_{PaRh} = 142.2, $J_{PaPb} = 321.4$, $J_{PaPc} = 38.6$),⁸ 34.88 (P_bPh_3 trans to THP, $J_{PbRh} = 130.5$, $J_{PbPa} = 321.4$, $J_{PbPc} = 38.6$), and 50.89 $(P_{\rm c}Ph_3 \text{ trans to Cl}, J_{\rm PcRh} = 192.9, J_{\rm PcPa} = 38.6, J_{\rm PcPb} = 38.6).$ The ${}^{31}P{}^{1}H$ spectrum changes over ~ 12 h (as the solution becomes yellow) to one unresolved multiplet at δ 29.62, and ddd patterns at δ 68.70 and 68.98 and at δ 170.47 and 170.67, the spectrum being essentially unchanged down to 213 K. After consideration of the corresponding spectrum for the PCyPh₂ system (see below), these resonances result from a roughly 1:1 mixture of cis- and trans-3, each isomer having three inequivalent P atoms; some of the J values for the δ 29.62 resonance can be retrieved from the other two resonances (see Experimental Section, and Tables S1 and S2).

⁽⁵⁾ SADABS. Bruker Nonius area detector scaling and absorption correction, V2.10; Bruker AXS Inc.: Madison, WI, 2003.

⁽⁶⁾ Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 1999, 32, 115.

⁷⁾ Elsevier, C. J.; Kowall, B.; Kragten, H. Inorg. Chem. 1995, 34, 4836.

⁽⁸⁾ Assignment of δ 20.07 to the THP ligand is based on data from ref 1.

Figure 2. ³¹P{¹H} NMR spectrum of *cis*- and *trans*-RhCl(PCyPh₂)[*P*,*P*-Ph(Cy)POCH₂P(CH₂OH)₂] (4) (cis/trans = 1:4).

The key to elucidating the chemistry resulted from slow precipitation (after 2 weeks) of X-ray quality, yellow crystals. The crystallographic analysis revealed that the structure was that of cis-3, the asymmetric unit containing two CH₃OH solvate molecules (Figure 1); cis refers to the disposition of the P atoms with Ph substituents. The structure revealed that P-C bond cleavage of a P-C₆H₅ moiety had occurred and a $-CH_2OH$ of the THP had been converted to an alkoxy moiety that had replaced the Ph group (Scheme 1); the C_6H_6 co-product was detected quantitatively by GC and, when the reaction was carried out in CD₃OD, which resulted in D/H exchange with the hydroxyl protons of THP, C₆H₅D was detected by GCMS. Thus, the square planar Rh^I complex contains the novel, P,P-chelating phosphine-phosphinite $Ph_2POCH_2P(CH_2OH)_2$ ligand, with the metal being 0.030-(5) Å out of the mean plane. Within the asymmetric unit, there are 12 intermolecular O- -H bonds, which are common within RhI-THP complexes.1 There are three strong H-bonds (O - H = 1.71 - 1.73 Å) between the hydroxyl-hydrogen of a P(CH₂OH) and the O atom of CH₃OH, one strong H-bond (O - H = 1.78 Å) between an O atom of a P(CH₂OH) and the hydroxyl-hydrogen of CH₃OH, and eight weaker H-bonds (O- -H = 2.53-2.62 Å): two between the *m*-H-atom of a Ph and the O atom of P(CH₂OH), two between the p-Hatom of a Ph and the O atom of CH₃OH, two between the H atom of a P(CH₂OH)-methylene and the O atom of CH₃-OH, and two between the H atom of the PCH₂OP methylene

and the O atom of CH₃OH. The ³¹P{¹H} spectrum of a methanol solution of the crystal still revealed a 1:1 mixture of *cis*- and *trans*-**3**, implying rapid equilibrium between the two isomers in solution, and the independence of the isomer ratio with temperature implies a thermoneutral equilibrium, which seems reasonable for the very similar isomeric structures. The ³¹P{¹H} and ¹H NMR spectra show that the 1:1 mixture is indefinitely stable in solution under Ar. An unsatisfactory elemental analysis for **3** is thought, based on ³¹P{¹H} data, which sometimes showed trace doublet peaks at δ 31.9 (J = 150) and 27.9 (J = 127), to be due to the presence of traces of RhCl(cod)(PPh₃)²;⁹ the carbonyl ligand could arise via decarbonylation of formaldehyde which can be readily formed from transition metal–THP species.¹⁰

The corresponding reaction of PCyPh₂ is qualitatively the same as that with PPh₃, the immediately formed brown solution showing no ³¹P{¹H} signal for **1**, some free PCyPh₂ (δ -3.03) and a complicated mixture of products showing δ values between 20.23 and 66.67, but we were unable to detect the intermediate *cis*-RhCl(PCyPh₂)₂(THP), analogous to that seen in the PPh₃ system. The ³¹P{¹H} NMR spectrum changes over ~10 h to one showing just two sets of three

⁽⁹⁾ O'Connor, J. M.; Ma, J. Inorg. Chem. 1993, 32, 1866.

^{(10) (}a) Higham, L. J.; Whittlesey, M. K.; Wood, P. T. J. Chem. Soc. Dalton Trans. 2004, 4202. (b) Hoye, P. A. T.; Pringle, P. G.; Smith M. B.; Worboys, K. J. Chem. Soc. Dalton Trans. 1993, 269.

doublets of doublets of doublets due to cis- and trans-4 (Scheme 1, Figure 2, and Tables S1 and S2); these species were readily identified because the cis/trans ratio was now 1:4. Benzene was again formed over the 10 h reaction time. The ${}^{31}P{}^{1}H$ assignments are consistent with literature data: formation of the five-membered ring and the electronwithdrawing effect of the O atom bound to P_{ν} (in *cis*-4) and P_C (in *trans*-4) atoms result in the very low-field signals for these P atoms,¹¹ while the large ${}^{2}J_{P\alpha P\beta}$ and ${}^{2}J_{PAPC}$ coupling constants define the mutually trans positions of these P atoms, and the ${}^{1}J_{RhP}$ values are in the normal range.¹² The ${}^{1}H$ NMR signals in CD₃OD for the inequivalent methylene protons of the reactant THP within cis- and trans-4 in CD₃OD appear as a multiplet in the range δ 3.07–4.18 (similar to the corresponding data for the PPh₃ system, Table S1). Some isolated yellow crystals were well characterized as an isomeric mixture by elemental analysis, NMR spectroscopy, and MS data; the ³¹P{¹H} NMR spectra of the crystals dissolved in CD₃OD and of the in situ solution reveal (as for the PPh₃ system) that the isomer ratio was unchanged from 298 to 213 K.

The reactivity of 1 with PEtPh₂, PMePh₂, P(p-tol)₃, P(p- $F-C_6H_4)_3$, and P^nPr_3 was qualitatively the same as that described for the PPh₃ and PCyPh₂ systems: in situ reactions revealed P-C bond cleavage with formation of cis- and trans-RhCl(PRR'₂)[P,P-R'(R)POCH₂P(CH₂OH)₂] in a ratio of ~ 1 , with concomitant generation of the hydrocarbon: benzene for the first two systems and then, respectively, toluene, fluorobenzene, and propane. The ${}^{31}P{}^{1}H{}$ and ${}^{1}H{}$ NMR data for the cis and trans isomer products, using the labeling of Figure 2, are summarized in Tables S1 and S2. Further evidence for an intermediate such as 2 (seen with PPh₃, Scheme 1) was seen only in the $P(p-F-C_6H_4)_3$ system, where *cis*-RhCl(P(*p*-F-C₆H₄)₃)₂(THP) was detected: $\delta_{\rm P}$ 20.00 (ddd, P_a (THP), $J_{PaRh} = 130.9$, $J_{PaPb} = 324.0$, $J_{PaPc} =$ 40.7), 33.78 (ddd, $P_{b}(p-F-C_{6}H_{4})_{3}$ trans to THP, $J_{PbRh} =$ 142.9, $J_{PbPa} = 324.0$, $J_{PbPc} = 38.0$), and 49.06 (ddd, $P_c(p-1)$ $F-C_6H_4$)₃ trans to Cl, $J_{PcRh} = 192.5$, $J_{PcPa} = 40.7$, $J_{PcPb} =$ 38.0). The aryl-containing phosphine systems took ~ 12 h to generate the equilibrium isomer mixture, while the $P^n Pr_3$ system was noticeably slower (>1 day); this is consistent with more general facile, metal-catalyzed cleavage of P-aryl bonds versus P-alkyl bonds, at least as substantiated under

homogeneous hydroformylation and hydrogenation conditions, where such cleavage is critical in determining catalytic activity.¹³ Of note, reaction of **1** with THP generates RhCl-(THP)₄ and no P–C bond cleavage is seen.¹

Reports on cleavage of a P-C bond concurrent with formation of a P-O bond are rare. A close analogue of our system is seen in work from Pringle's group,^{10b} which reported P-C bond cleavage at Pt^{II} and Pd^{II} centers during studies on metal complex-catalyzed addition of PH₃ to formaldehyde to give THP: $[M{P,P-(HOCH_2)_2POCH_2P(CH_2-$ OH)₂}₂Cl₂ complexes were isolated as a cis/trans mixture from reaction of cis-MCl₂(THP)₂ (M = Pt, Pd) with excess THP in methanol. Analogous to our Rh systems, a phosphine-phosphinite ligand has been formed, but in contrast to the Rh species, the substituents at each P atom are hydroxymethyl; the Pt and Pd complexes were well characterized but not crystallographically. A complicated multistep mechanism was presented and involved initial formation of a binuclear metal alkoxide derived from deprotonation of a coordinated P(CH₂OH)₃ and a final ring closure by nucleophilic attack of a coordinated PCH₂O⁻ moiety at a second (mutually cis) coordinated P atom; the proton was incorporated into a phosphonium species, while in our work the proton becomes a component of a hydrocarbon product. A similar proton loss from the THP and ring closure by nucleophilic attack at a *cis*-PRR₂' moiety is likely the essential mechanism in our Rh systems; none of the commonly proposed mechanisms for metal-catalyzed P-C bond cleavage (oxidative insertion of a low-valent metal into the aryl- and alkyl-phosphorus bonds, electrophilic substitution, and o-metalation processes)14,15 seems appropriate for the Rh systems. A related example from Pregosin's group¹⁶ is P-C bond cleavage of a OTf-Ru^{II}-P(OH)Ph₂ moiety induced by external MeOH to form a species containing the Ph-Ru^{II}-P(OH)(OMe)Ph moiety with HOTf as co-product; here the MeOH proton removes coordinated triflate which is replaced by a Ph of the phosphine and the methoxide replaces the phosphine phenyl. Less germane examples of P-C bond cleavage within a coordinated PPh₃ with co-formation of a P-O bond include that of an Ir^{III} system, the cleavage being induced by a carbonyl oxygen of a coordinated dibenzoylmethylene moiety,¹⁷ and that of a Pd^{II} system, where an acetate ligand provides the oxygen source.¹⁸ We are unaware of any reports of cleavage of an aryl-phosphine P-C bond induced by a -CH₂OH functionality, with co-formation of a hydrocarbon. More common for coordinated THP is loss of formaldehyde with formation

^{(11) (}a) Hoge, B.; Thösen, C.; Pantenburg, I. Chem. Eur. J. 2006, 12, 9019.
(b) Artyushin, O.; Odinets, I.; Goryunov, E.; Fedyanin, I.; Lyssenko, K.; Mastryukova, T.; Röschenthaler, G.-V.; Kégl, T.; Keglevich, G.; Kollár, L. J. Organomet. Chem. 2006, 691, 5547. (c) Kim, Y.; Verkade, J. G. J. Organometal. Chem. 2003, 669, 32. (d) Arena, C. G.; Faraone, F.; Graiff, C.; Tiripicchio, A. Eur. J. Inorg. Chem. 2002, 711. (e) Nifantyev, E. E; Koroteev, M. P.; Koroteev, A. M.; Belsky, V. K.; Stash, A. I.; Antipin, M. Y.; Lysenko, K. A.; Cao, L. J. Organomet. Chem. 1999, 587, 18. (f) Bergamini, P.; Costa, E.; Orpen, A. G.; Pringle, P. G.; Smith, M. B. Organometallics 1995, 14, 3178. (g) Li, Y. W.; Newton, M. G.; King, R. B. J. Organomet. Chem. 1995, 488, 63. (h) Grim, S. O.; Briggs, W. L.; Barth, R. C.; Tolman, C. A.; Jesson, J. P. Inorg. Chem. 1974, 13, 1095. (i) Allison, D. A.; Clardy, J.; Verkade, J. G. Inorg. Chem. 1972, 11, 2804.

^{(12) (}a) Cipot, J.; McDonald, R.; Ferguson, M. J.; Schatte, G.; Stradiotto, M. Organometallics 2007, 26, 594. (b) Han, Li-B.; Tilley, T. D. J. Am. Chem. Soc. 2006, 128, 13698. (c) Marcazzan, P.; Patrick, B. O.; James, B. R. Organometallics 2005, 24, 1445. (d) Raebiger, J. W.; Dubois, D. L. Organometallics 2005, 24, 110. (e) Merckle, C.; Blümel, J. Top. Catal. 2005, 34, 5.

 ^{(13) (}a) Garrou, P. E. Chem. Rev. 1985, 85, 171. (b) Sakakura, T.; Kobayashi, T.-A.; Hayashi, T.; Kawabata, Y.; Tanaka, M.; Ogata, I. J. Organomet. Chem. 1984, 267, 171.

⁽¹⁴⁾ Kikukawa, K.; Yamane, T.; Ohbe, Y.; Takagi M.; Matsuda, T. Bull. Chem. Soc. Jpn. 1979, 52, 1187.

^{(15) (}a) Dubois, R. A.; Garrou, P. E.; Lavin, K. D.; Allcock, H. R. Organometallics 1984, 3, 649. (b) Goel, A. B. Inorg. Chim. Acta 1984, 84, L25. (c) Braterman, P. S.; Cross, R. J.; Young, G. B. J. Chem. Soc., Dalton Trans. 1976, 1310.

⁽¹⁶⁾ Geldbach, T. J.; Drago, D.; Pregosin, P. S. *Chem. Comm.* 2000, 1629.
(17) Cowie, M.; Gauthier, M. D.; Loeb, S. J.; McKeer, I. R. *Organome-*

tallics 1983, 2, 1057. (18) Kikukawa, K.; Matsuda, T. J. Organomet. Chem. 1982, 235, 243.

of PH(CH₂OH)₂, a reverse step in metal complex-catalyzed synthesis of THP from PH₃ and CH₂O.¹⁰

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada for financial support via a Discovery Grant.

Note Added after ASAP Publication. This article was released ASAP on September 15, 2007 with several incorrect sub values to J in complexes 3 and 4 of the Experimental

Section. The correct version was posted on September 18, 2007.

Supporting Information Available: General experimental procedure, ¹H and ³¹P{¹H} NMR data (Tables S1, S2), and CIF file for *cis*-4. This material is available free of charge via the Internet at http://pubs.acs.org.

IC7012182